EN55022B Compliant $28 \mathrm{~V}_{\mathrm{IN}}, 6 \mathrm{~A}$ Step-Down μ Module Regulator

DESCRIPTIO

Demonstration circuit DC1295B features the LTM ${ }^{\circledR} 4606 E V$, an EN55022 Class B certified, switch mode step-down power module. The input voltage range is from 4.5 V to 28 V with a jumper programmable output voltage from 0.6 V to 5 V . The rated load current is 6 A , while derating is necessary for certain $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {OUT }}$, and thermal conditions. The LTM4606 allows the user to program output ramp-up and ramp-down throughthe TRACK/SS pin. The outputcan be set to coincidentally or ratiometrically track to another
voltage rail. Output voltage margining can also be realized through jumper position selections. The LTM4606 data sheet must be read in conjunction with this demo manual prior to working on or modifying demo circuit DC1295B.

Design files for this circuit board are available at http://www.linear.com/demo

LT, LT, LTC, LTM, μ Module, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PGRFORMANCE SUMMARY $\left(T_{A}=25^{\circ}\right)$

PARAMETER	CONDITION	VALUE
Input Voltage Range		5 V to 28 V
Output Voltage $\mathrm{V}_{\text {OUT }}$	Jumper Selectable (Open for 0.6V)	$1.2 \mathrm{~V}, 1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V} ; \pm 2 \%$
Maximum Continuous Output Current	Derating Is Necessary for Certain $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$, and Thermal Conditions	$6 \mathrm{~A}_{\text {DC }}$
Default Operating Frequency		800 kHz
Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=6 \mathrm{~A}$	89.6%, See Figure 4

BOARD PHOTO

DEMO MANUAL DC1295B

PUICK START PROCEDURE

Demonstration circuit DC1295B is an easy way to evaluate the performance of the LTM4606EV. Please refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

1. Place jumpers in the following positions for a typical $1.5 \mathrm{~V}_{\text {OUT }}$ application:

FCB	MARG1	MARGO	RUN	VOUT SELECT
CCM	LO	LO	ON	1.5 V

2. With power off, connect the input power supply, Ioad and meters as shown in Figure 1. Preset the load to OA and $\mathrm{V}_{\text {IN }}$ supply to be 12 V .
3. Turn on the power at the input. The output voltage should be $1.5 \mathrm{~V} \pm 2 \%(1.47 \mathrm{~V} \sim 1.53 \mathrm{~V})$.
4. Once the proper output voltage is established, adjust the load within the operating range and observe the output voltage regulation, efficiency and other parameters.
5. The very low ripple of the LTM4606 requires proper measurement technique. Input ripple can be measured with a typical scope probe, but you should not use the ground clip lead. See Figure 2 for an illustration of how to connect to the input capacitor. The output ripple should be measured with a 50Ω BNC cable connected to J6.
6. For the optional load transient test, apply an adjustable pulse signal between IOSTEP_CLK and GND pins. Pulse amplitude sets the current step. The pulse signal should have very small duty cycle ($<5 \%$) to limit the thermal stress on the transient load circuit. The output transient current can be monitored at BNC connector $\mathrm{J} 5(10 \mathrm{mV} / \mathrm{A})$, the output voltage can be monitored at BNC connector J6.

PUICK START PROCEDURE

Figure 1. Test Setup of DC1295B

Figure 2. Scope Probe Placements for Measuring Input Ripple

DEMO MANUAL DC1295B

QUICK START PROCEDURE

$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=5 \mathrm{~A}$
OUTPUT CAPACITANCE: $100 \mu \mathrm{~F}+22 \mu \mathrm{~F}$ CERAMIC CAPACITORS

$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=5 \mathrm{~A}$
OUTPUT CAPACITANCE: $100 \mu \mathrm{~F}+22 \mu \mathrm{~F}$ CERAMIC CAPACITORS
A $1 \mu \mathrm{~F}$ CERAMIC CAPACITOR ADDED CLOSE TO COUT1
Figure 3. Output Ripple (300MHz BW)

PUICK START PROCEDURE

Figure 4. Measured Efficiency at $12 \mathrm{~V} \mathrm{~V}_{\text {IN }}$ with Different $\mathrm{V}_{\text {OUT }}$

Figure 5. Measured Load Transient Response

DEMO MANUAL DC1295B

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	CIN1	CAP, 150uF 20\% 35V ALUM	SANY0 35ME150WXV (now SUNCON 35ME150WXV)
2	3	CIN2, CIN3, C8	CAP, 1206 10んF 20\% 35V X5R	TAIYO YUDEN GMK316BJ106ML-T
3	1	COUT1	CAP, 1812 100⿲F 20\% 6.3V X5R	TDK C4532X5R0J107M
4	1	COUT4	CAP, $121022 \mathrm{~F} 20 \% 10 \mathrm{~V}$ X R	TAIYO YUDEN JMK325BJ226MM-T
5	1	CSS	CAP, $06030.1 \mu \mathrm{~F} 20 \% 16 \mathrm{~V}$ X7R	AVX 0603YC104MAT2A
6	1	C5	CAP, 0603 47pF 10\% 50V NPO	AVX 06035A470KAT2A
7	1	D1	DIODE, ZENER 4.7V	DIODES INC. BZX84C4V7
8	1	R17	RES, 0603 10k 5\% 1/10W	VISHAY CRCE060310KOJNEA
9	1	R4	RES, 0603 392k 1\% 1/10W	VISHAY CRCW0603392KFKEA
10	1	R14	RES. 0603 100k 5\% 1/10W	VISHAY CRCW0603100KJNEA
11	1	R15	RES, 0603 60.4k 1\% 1/10W	VISHAY CRCW060360K4FKEA
12	1	U1	IC, POWER μ MODULE	LINEAR TECH. LTM4606EV

Additional Demo Board Circuit Components

1	2	CIN4, CIN5	CAP, 1206 OPTION	OPTION
2	0	COUT2	CAP, 1812 OPTION	OPTION
3	0	COUT3	CAP, 1210 OPTION	OPTION
4	2	C1, C2	CAP, $06031 \mu \mathrm{~F} 10 \%$ 10V X5R	TAIYO YUDEN LMK107BJ105KA
5	0	C3, C4, C6, C7	CAP, 0603 OPTION	OPTION
6	1	Q1	XSTR, SUD50N03-10CP MOSFET	SILICONIX SUD50N03-10CP
7	1	R1	RES, 0603 10k 5\% 1/10W	VISHAY CRCE060310K0JNEA
8	1	R2	RES, $25120.010 \Omega 1 \% 1 W$	VISHAY WSL2512R0100FEA
9	1	R3	RES. 0603 51k 5\% 1/10W	VISHAY CRCW060351KOJNEA
10	0	R6, R11, R12, R18, R26	RES, 0603 OPTION	OPTION
11	2	R23, R10	RES, 06030Ω JUMPER	VISHAY CRCW06030000ZOEA
12	1	R16	RES, 0603 40.2k 1\% 1/10W	VISHAY CRCW060340K2FKEA
13	1	R19	RES, 0603 30.1k 1\% 1/10W	VISHAY CRCW060330K1FKEA
14	1	R20	RES, 0603 19.1k 1\% 1/10W	VISHAY CRCW060319K1FKEA
15	1	R21	RES, 0603 13.3k 1\% 1/10W	VISHAY CRCW060313K3FKEA
16	1	R22	RES, 0603 8.25k 1\% 1/10W	VISHAY CRCW06038K25FKEA

Hardware/Components (For Demo Board Only)				
1	12	E1-E4, E6-E9, E11-E14	TURRET	MILL MAX 2308-2-00-80-00-00-07-0
2	6	JP1, JP2, JP3, JP4, JP5, JP6	HEADER, 2-PIN, 2mm	SAMTEC TMM 102-02-L-S
3	4	JP7, JP8, JP9, JP10	HEADER, 3-PIN, 2mm	SAMTEC TMM-103-02-L-S
4	4	J1, J2, J3, J4	JACK, BANANA	KEYSTONE 575-4
5	2	J5, J6	CONN, BNC, 5 PINS	CONNEX 112404
6	5	JP2, JP7-JP10	SHUNT, 2mm	SAMTEC 2SN-BK-G
7	4		STAND0FF, NYLON	KEYSTONE 8834

DEMO MANUAL DC1295B

SCHEMATIC DIAGRAM

DEMO MANUAL DC1295B

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

