
Plastic Fiber Optic Photologic Detectors

APPLICATIONS

- ► Digital Data Links
- ► PC-to-Peripheral Links
- ► Process Control
- ► Household Appliances
- ► Motor Controller Triggering
- ► Electronic Games
- Medical Instruments
- ► Automotive Electronics
- ► Robotics Communications
- ► EMC/EMI Signal Isolation

$(1_{A}=25^{\circ}C)$
Operating and Storage Temperature Range (T _{OP} , T _{STG})40° to 85°C
$\begin{array}{l} \mbox{Soldering Temperature} \\ (2 \mbox{ mm from case bottom}) \\ (T_S) \mbox{ t} \le 5 \mbox{s} \hdots 240 \mbox{°C} \end{array}$
Supply Voltage, (V_{S}) 16 V
Voltage at Output lead (IF-95OC only)30 V
Sinking Current, DC $(\mathrm{I}_{\mathrm{C}})$ 50 mA
Source Current (I _O) (IF-95T only)10 mA
Power Dissipation $(P_{TOT}) T_A = 25^{\circ}C \dots 100 \text{ mW}$
De-rate Above 25°C2.50 mW/°C

MAXIMUM RATINGS

 $(T_A = 25^{\circ}C)$

DESCRIPTION

The IF-D95T and IF-D95OC are high-sensitivity photologic detectors housed in "connector-less" style plastic fiber optic packages. The detector contains an IC with a photodiode, linear amplifier, and Schmitt trigger logic circuit. The IF-D95T features a TTL/CMOS compatible totem-pole output, while the IF-D95OC has an open-collector output. The devices can drive up to 5 TTL loads over supply voltages ranging from 4.5 to 16 Volts. Optical response extends from 400 to 1100 nm, making them compatible with a wide range of visible and near infrared LED and laser diode sources. The detector package features an internal micro-lens and a precision-molded PBT housing to ensure efficient optical coupling with standard 1000 µm core plastic fiber cable.

Application Highlights

The IF-D95T and IF-D95OC are suitable for digital data links at rates up to 125 kbps. A Schmitt trigger improves noise immunity and TTL/CMOS logic compatibility greatly simplifies interfacing with existing digital circuits. The integrated design of the IF-D95 provides a total, cost-effective solution in a variety of digital applications.

FEATURES

- Integrated Photodetector, Amplifier and Schmitt Trigger
- Mates with Standard 1000 μm Core Jacketed Plastic Fiber Optic Cable
- No Optical Design Required
- Inexpensive But Rugged Plastic Connector Housing
- Internal Micro-Lens for Efficient Optical Coupling
- ◆ Connector-Less Fiber Termination
- Light-Tight Housing Provides Interference-Free Transmission
- High Optical Sensitivity
- "Active Low" Output Options Available as Special Order
- ◆ RoHS Compliant

CHARACTERISTICS (T_A=25°C)

Parameter	Symbol	Min	Тур	Max	Unit
Peak Sensitivity	λ_{PEAK}	-	800	-	nm
Spectral Sensitivity (S=10% of S _{MAX})	Δλ	400	-	1100	nm
Operating Voltage	V _{CC}	4.5	-	16	V
Supply Current	ICC	-	-	6	mA
Light Required to Trigger V_{CC} =5 V, R_L =1k,					
λ=660 nm	Er (+)	-	1.0 (-30)	-	µW(dBm)
IF-D95T					
High Level Output Voltage (I_{OH} = -1.0 μ A)	V _{OH}	V _{CC} -2.1	-	-	V
Low Level Output Voltage (I _{OH} = 16 mA)	V _{OL}	-	-	0.34	V
Output Rise and Fall Times (f= 10.0 kHz, R _L = 10 TTL Loads)	t _r , t _f	_	_	70	ns
Propagation Delay, Low-High, High-Low $(f=10.0 \text{ kHz}, R_L=10 \text{ TTL Loads})$	t _{PLH} , t _{PHL}	_	8.0	_	μs
IF-D95OC					
High Level Output Current (V _{OH} =30 V)	I _{OH}	-	-	100	μA
Low Level Output Voltage (I _{OL} =16 mA)	V _{OL}	-	-	0.4	V
Output Rise and Fall Times (f= 10.0 kHz, R_L =360 Ω)	t _r , t _f	_	_	100	ns
Propagation Delay, Low-High, High-Low (f= 10.0 kHz, $R_L{=}360_{\Omega})$	t _{PLH} , t _{PHL}	-	6.0	-	μs

IF-D95

Plastic Fiber Optic Photologic Detectors

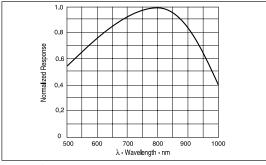


FIGURE 1. Typical detector response versus wavelength.

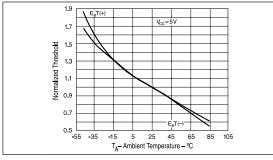


FIGURE 2. Normalized threshold irradiance vs. amb. temp.

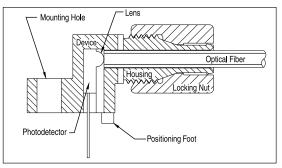


FIGURE 3. Cross-section of fiber optic device.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

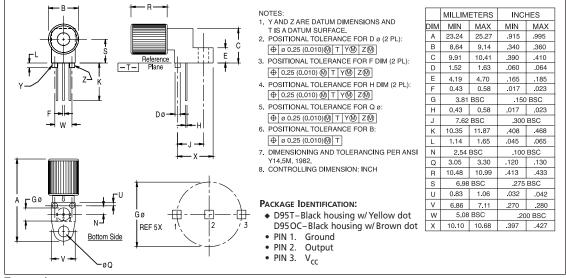


FIGURE 4. Case outline.